

Свидетельство СРО «АПОЭК» - Ассоциации «Проектировщики оборонного и энергетического комплексов» Номер решения о приеме в члены СРО № 06-ПСС-38/2018 от 20.06.2018 г.

125124, Москва, ул. 3-я Ямского Поля, д.18, эт. 8, помещ. IX, ком. 13, т. (499)706-8810, e-mail: stadyo@stadyo.ru

Определение расчётных ветровых нагрузок на несущие и фасадные конструкции и параметров пешеходной комфортности многофункционального жилого комплекса, расположенного по адресу: г. Москва, Огородный проезд, вл.20, на основе численного решения трехмерной задачи аэродинамики

1. Исходные данные. Постановка задач

Постановка задач расчетных исследований

В соответствии с техническим заданием на Этапе 1 НИР ставятся и решаются следующие задачи:

1) Анализ и обобщение проектной документации Объекта, постановка задач расчетных исследований.

2) Разработка и верификация трехмерных аэродинамических расчетных моделей Объекта с учетом существующей и перспективной окружающей застройки и различных направлений ветра.

3) Выявление наиболее опасных и характерных расчетных случаев (направлений ветра) на основе анализа суммарных ветровых нагрузок на несущие конструкции сооружений, полученных в результате численного моделирования.

4) Определение поэтажных расчетных средних, пульсационных и суммарной составляющих ветровой нагрузки на несущие конструкции для исследуемых направлений ветра.

5) Определение распределения пикового (минимального и максимального) ветрового давления на ограждающие (фасадные) конструкции Объекта.

6) Проведение критериального анализа ветровой комфортности пешеходных зон на участке строительства, включая эксплуатируемые поверхности стилобата и корпусов Объекта.

7) Проведение исследований возможности возникновения резонансного вихревого возбуждение корпусов Объекта и его интенсивности

Площадка строительства, рельеф и застройка объекта

Земельный участок под строительство Объекта расположен по адресу г. Москва, Огородный проезд, вл.20.

Объект находится в зоне плотной жилой, деловой и транспортной застройки. В зоне аэродинамического влияния на расстоянии ~1.2 км к востоку от Объекта расположена останкинская телебашня.

Окружающий рельеф в сравнении с высотой объекта (около 200 м) и окружающей застройкой довольно ровный без значимых перепадов высот. Такой рельеф не оказывает значимого влияния на аэродинамику исследуемого Объекта и не учитывался в расчетах.

Рис. Схема планировочной организации земельного участка и Карта местности возле площадки строительства

Согласно СП 20.13330.2016 площадка строительства находится в *I ветровом районе* (нормативное значение ветрового давления $w_0 = 0.23 \ \kappa \Pi a$).

Преобладают южный, юго-восточный и западные ветра (рис. 2.5).

Согласно СП 20.13330.2016 при определении ветровых нагрузок принят тип местности – *С*.

Краткая характеристика исследуемого Объекта

Объект представляет собой четыре корпуса (R1, R2, R3 и R4), при этом корпуса с первого по третий объединены стилобатной частью.

Корпуса R1 и R3 состоят из 60 этажей. 60-ый этаж– технический, с выходом на крышу.

Корпус R2 состоит из 30 этажей, корпус R4 – из 32 этажей

Стилобат здания представляет собой 2 этажа. Стилобате расположены в основном помещения общественного назначения и служебные помещения общедомового значения.

Архитектурный облик здания формируется за счет динамики разновысотных корпусов и фасадами различного остекления.

Ориентация фасадов Корпусов предполагает максимальную продолжительность инсоляции помещений.

2. Разработка и верификация расчетных моделей

Для моделирования аэродинамики объекта были разработаны четыре модели:

- *модель 1* для оценки ветровой комфортности с учетом перспективной окружающей застройки.
- *модель 2* для оценки ветровых нагрузок с учетом перспективной окружающей застройки
- *модели 3-4* для оценки чисел Струхаля и амплитуд аэродинамических коэффициентов в рамках исследования вихревого возбуждения

Геометрические модели Объекта

Практическая подготовка расчетных моделей начинается с создания геометрической объемной модели Объекта и окружающей застройки в радиусе 1.5 км. Геометрия зданий и сооружений Объекта выполнена согласно исходным данным. Объемные и плоские геометрические модели создавались в модуле ANSYS SpaceClaim.

Для экономии вычислительных ресурсов при исследованиях пешеходной комфортности в геометрической *модели 1* не учитывались фасады Объекта как малозначимый фактор для распределения скоростей ветра на высоте 1.5м над землей.

Для экономии вычислительных ресурсов при исследованиях вихревого возбуждения рассматривались плоские модели на характерных высотах (горизонтальное сечение выше корпусов R2 и R3 – *модель 3*, горизонтальное сечение через все 4 корпуса – *модель 4*).

Рис. *Модель 1*. Геометрическая модель. Общий вид Синим выделен исследуемый объект, серым – перспективная окружающая застройка.

Рис. Модель 2. Геометрическая модель. Виды вблизи Объекта.

Рис. Геометрическая модель воздушного домена для *модели 4*. Красными стрелками показано направления вращения круговой части объема при смене угла атаки, синей стрелкой показано направление ветра

Граничные и начальные условия

Рис. Расчетная область *Модели 4* (ANSYS CFX) с обозначенными граничными условиями.

Рис. Исследуемые направления ветра.

3. Определение ветровых нагрузок

Форма представления и номенклатура результатов

В данном разделе приведены основные результаты выполненных расчетных исследований по определению ветровых нагрузок на несущие и ограждающие конструкции комплекса.

Система координат сооружений Объекта и расчетные направления ветрового потока показаны на рис. 4.12. Начало координат для каждого из корпусов находится в геометрическом центре контуров последних этажей, для стилобата принято 4 системы координат. Оси координат повернуты относительно глобальных координат в соответствии с предоставленными заказчиком материалами

Рис. Системы координат сооружений Объекта

Угол атаки ветра (Угол, °) отсчитывается от Севера по часовой стрелке (рис. 4.9).

Поэтажные ветровые нагрузки на перекрытия вычисляются интегрированием по внешним поверхностям каждого Корпуса от середины одного этажа до середины вышележащего этажа.

Положительному значению ветровых нагрузок соответствует направление, сонаправленное соответствующей координатной оси, а отрицательному – противоположно направленное соответствующей оси.

Рис. Схема именованных компонент корпусов R1, R2, R3 и R4

Ветровые нагрузки на несущие конструкции

В разделе были представлены следующие материалы:

- средние интегральные (на весь Корпус) ветровые нагрузки (F_{XAVG} , F_{YAVG} , MH), на несущие конструкции каждого *Корпуса* в координатных осях Объекта и векторная сумма нагрузки (F_R , кH) для 40-ка направления были представлены в табличном виде для 28 направлений (по 24 стандартных с шагом 15° и 4 перпендикулярных фасадам корпуса) в форме круговых диаграмм;

- интегральные опрокидывающие и крутящий моменты силы (M_X , M_Y , M_Z , $MH \cdot M$) вокруг осей X, Y и Z в системе координат каждого корпуса представлены в табличном виде (табл. 5.2) и в форме круговых диаграмм ;

- поэтажные компоненты средней равнодействующей силы (f_x, f_y , H/м) и равномерно распределенная касательная нагрузка (f_τ , H/м) на несущие конструкции корпусов для наиболее опасных направлений ветра для каждого из корпусов представлены в табличном виде;

- поэтажные компоненты пульсационной равнодействующей силы (*f_{x puls}*, *f_{y puls}*, H/м) и равномерно распределенная касательная нагрузка (*f_{τ puls}*, H/м) на несущие конструкции корпусов для наиболее опасных направлений ветра для каждого из корпусов представлены в табличном виде;

- поэтажные компоненты суммарной равнодействующей силы ($f_x sum$, $f_y sum$, H/м) и равномерно распределенная касательная нагрузка ($f_{\tau sum}$, H/м) на несущие конструкции корпусов для наиболее опасных направлений ветра для каждого из корпусов представлены в табличном виде;

- поэтажные компоненты средней, пульсационной и суммарной равнодействующей силы на несущие конструкции стилобата для наиболее опасных направлений ветра представлены в табличном виде;

Пример результатов приведен для корпуса R2.

Для уменьшения количества табличных данных и, как следствие, трудоемкости задания нагрузок в прочностных расчетах без значимой потери точности поэтажные силы f_x , f_y и f_t приведены одинаковыми для каждой пары этажей (1-2, 3-4 и т.д.). При этом соответствующее значение сил определялось как среднее арифметическое между этажами в паре. Таким образом, при задании нагрузок в прочностной модели следует на оба перекрытия пары этажей задавать одинаковое значение нагрузки, приведенное в соответствующей ячейке таблиц.

Рис. Компоненты ветровых нагрузок (F_X , F_Y , F_R , [MH]) в осях корпуса R2

Рис. Опрокидывающие моменты (*M*x, *M*y) (а) и крутящий момент (*M*z) (б), действующие на здание, МН*м. (значения приведены по модулю)

) F 1	5	1	1 7					-)) -		
		0			109			225			255	
Этажи	<i>f_{x,}</i> Н/м	<i>fy</i> , Н/м	<i>f</i> _₹ , Н/м	<i>f_{x,}</i> Н/м	<i>fy</i> , Н/м	<i>f</i> _₹ , Н/м	<i>f_{x,}</i> Н/м	<i>fy</i> , Н/м	<i>f</i> _₹ , Н/м	<i>f_{x,}</i> Н/м	<i>f</i> у, Н/м	<i>f</i> _τ , Н∕м
1-2	192	-478	-	-135	-522	-	198	581	-	241	445	-
3-4	54	-230	29	-96	-236	4	135	246	-39	159	228	-27
5-6	-25	-259	30	-155	-239	2	215	254	-38	233	268	-50
7-8	-37	-281	41	-171	-224	6	206	270	-46	232	260	-45
9-10	-46	-298	52	-187	-215	6	197	302	-52	235	254	-38
11-12	-45	-315	58	-199	-215	6	190	335	-58	236	254	-42
13-14	-41	-334	58	-212	-224	5	186	367	-61	234	260	-45
15-16	-47	-336	57	-226	-239	3	185	398	-62	233	269	-47
17-18	-57	-325	54	-242	-252	3	186	428	-60	234	282	-45
19-20	-70	-308	48	-257	-261	5	188	454	-62	240	295	-45
21-22	-81	-289	37	-277	-263	12	191	482	-61	250	312	-42
23-24	-90	-264	24	-292	-259	25	197	506	-64	265	327	-43
25-26	-95	-230	6	-307	-255	31	199	528	-62	276	340	-40
27-28	-97	-195	-12	-317	-267	36	205	540	-59	287	346	-36
29-30 и покрытие	-136	-155	-30	-452	-424	58	308	727	-112	405	471	-29

Таблица 3.1 Поэтажные компоненты средней равнодействующей силы и касательная нагрузка, действующие на корпус R2. Направления ветра 0°,109°,225° и 255°

Таблица 3.2 Поэтажные компоненты пульсационной равнодействующей силы и касательная нагрузка, действующие на корпус R2. Направления ветра 0°,109°,225° и 255°

		0	2		109	2		225			255	
Этажи	f _{x puls,} Н/м	f _{y puls} , H/м	$f_{ au \ puls}, \ H/M$	f _{x puls,} Н/м	f _{y puls} , H/м	$f_{ au puls}, \ { m H/M}$	f _{x puls,} H/м	f _{y puls} , H/м	$f_{ au puls}, H/M$	f _{x puls,} Н/м	f _{y puls} , H/м	$f_{ au \ puls}, \ { m H/M}$
1-2	105	280	-	85	362	-	141	332	-	147	475	-
3-4	40	134	17	64	135	2	96	206	31	84	244	25
5-6	28	143	17	125	165	1	159	262	35	131	276	43
7-8	66	162	25	152	193	5	166	279	44	135	249	36
9-10	84	183	35	157	203	6	170	300	50	149	221	29
11-12	56	218	41	171	210	6	172	315	54	181	212	34
13-14	36	265	46	182	217	5	173	328	55	203	225	39
15-16	21	286	48	190	226	3	175	339	54	210	235	42
17-18	37	290	48	202	229	2	176	351	51	218	260	41
19-20	44	284	44	211	227	4	173	353	50	224	282	43
21-22	39	278	35	224	217	10	171	366	47	232	302	40
23-24	37	278	24	236	215	20	176	373	49	249	319	42
25-26	26	254	6	236	212	24	169	374	45	247	317	37
27-28	20	234	13	259	236	30	173	379	43	254	322	33
29-30 и покрытие	14	183	27	427	332	51	283	588	93	368	426	27

P.	, экс, д.	enterbyi	ощпет	ia nopi		manpa		i Deipa	0,107	,	11 200	
		0			109			225			255	
Этажи	f _{x sum,} Н/м	f _{y sum} , Н/м	f _{т sum} , Н/м	f _{x sum,} H/M	f _{y sum} , H/м	f _{т sum} , Н/м	f _{x sum,} Н/м	f _{y sum} , Н/м	f _{т sum} , Н/м	f _{x sum,} H/M	f _{y sum} , Н/м	f _{т sum} , H/м
1-2	297	-757	-	-220	-884	-	339	913	-	388	919	-
3-4	95	-364	27	-160	-371	4	231	452	57	244	472	48
5-6	-53	-401	26	-279	-403	2	375	515	66	364	543	80
7-8	-103	-443	41	-322	-417	10	372	548	86	366	508	66
9-10	-129	-481	58	-344	-417	10	366	602	97	384	475	52
11-12	-100	-533	69	-370	-425	11	361	650	104	417	466	61
13-14	-77	-599	82	-393	-442	9	359	695	104	437	485	74
15-16	-68	-621	89	-416	-464	5	359	737	100	443	503	78
17-18	-94	-615	90	-444	-480	4	361	779	93	452	542	79
19-20	-114	-591	83	-468	-488	7	361	807	89	464	577	83
21-22	-120	-568	67	-501	-479	18	362	848	84	481	614	79
23-24	-126	-542	47	-528	-474	36	372	878	85	513	645	81
25-26	-120	-484	13	-543	-466	43	368	902	78	522	656	70
27-28	-117	-429	26	-574	-504	55	379	919	73	541	668	63
29-30 и покрытие	-150	-336	51	-878	-756	95	590	1315	169	773	897	51

Таблица 3.3 Поэтажные компоненты суммарной равнодействующей силы и касательная нагрузка, действующие на корпус R2. Направления ветра 0°,109°,225° и 255°

Пиковые ветровые давления на ограждающие конструкции

На рис. представлены диаграммы поэтажных огибающих минимального и максимального значений ветровых давлений для Корпусов ЖК. Эта же данные представлены в табличном виде в табл..

На рис., в графическом виде представлены изополя верхней огибающей максимальных значений ветрового давления и нижней огибающей минимальных значений ветрового давления.

Изополя верхней огибающей ветрового давления следует использовать в расчетах фасадных конструкций в качестве пиковых положительных *w*₊ ветровых воздействий.

Изополя нижней огибающей ветрового давления следует использовать в расчетах фасадных конструкций в качестве пиковых отрицательных *w*₋ ветровых воздействий.

Отдельным файлами к отчету приложены картины огибающих (пиковых) ветровых давлений для каждого корпуса и стилобата в 3D-виде (формат *avz).

Пример результатов приведен для корпуса R2.

				Кор	onyc R2				
Эта	P _{max} ,	$\operatorname{ANG}(P_m), \circ$	P _{min} , [a	$\operatorname{ANG}(P_m), ^{\circ}$	Этаж	<i>P_{max}</i> ,	ANG(ax), °	P _{min} , Ia	ANG(ain), °
1	517	195	-811	122	17	698	315	196	315
2	406	195	-1 076	122	18	710	315	066	315
3	537	195	-1 068	307	19	710	315	348	315
4	512	195	-1 513	307	20	711	255	327	315
5	464	195	-1 917	75	21	754	255	350	315
6	471	255	-1 899	315	22	752	255	306	315
7	512	255	-2 089	315	23	768	255	117	315
8	498	225	-2 093	315	24	785	255	037	315
9	548	255	-1 865	345	25	813	255	085	289
10	523	255	-1 623	345	26	816	255	791	307
11	582	255	-1 875	315	27	838	255	790	289
12	564	315	-1 575	32	28	852	255	872	289
13	626	255	-1 980	315	29	855	255	960	300
14	638	315	-1 636	32	30	858	255	011	300
15	654	315	-2 076	315	покры ие	921	225	647	240
16	685	315	1 702	315					

Таблица 3.4 Поэтажны	е огибающие миним	ального и мак	симального	ветрового	давления
на ог	раждающие (фасадн	ые) конструкци	ии <i>Корпуса</i> I	R2.	

ANG(*P_{max}*), **ANG**(*P_{min}*) – углы атаки ветра, при котором реализуется максимальная (минимальная) огибающая ветрового давления.

Рис. Поэтажные огибающие минимального (*P_{min}*) и максимального (*P_{max}*) значений давления (Па) на ограждающие (фасадные) конструкции *Корпуса R2* с учетом всех направлений ветра

Рис. Верхняя огибающая максимальных значений ветрового давления (Па) на ограждающие (фасадные) конструкции *Корпуса R2*.

Рис. Нижняя огибающая минимальных значений ветрового давления (Па) на ограждающие (фасадные) конструкции *Корпуса R2*.

4. Оценка пешеходной комфортности

Форма представления и номенклатура результатов

В данной главе приведены основные результаты выполненных расчетных исследований по оценке ветровой комфортности пешеходных зон Объекта.

Система координат сооружений и расчетные направления ветрового потока показаны на рис.. Пешеходные зоны объекта показаны на рис.

Полученные результаты представлены в следующем виде:

– расчетные поля коэффициентов усиления скоростей ветра (относительные средние скорости ветра, $V_r = V_m/V_{prof}$, где V_m – средняя расчетная скорость ветра в пешеходной зоне на высоте 1.5 м, V_{prof} – средняя скорость ветра на той же высоте без учета зданий для 8-ми характерных направлений ветра (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315,;

- средневзвешенные для 24-х расчетных направлений ветра значения коэффициента усиления ветра $\overline{V_{x}}$;

– вычисленные уровни пешеходной комфортности (повторяемость максимальной скорости ветра) по 3-м нормативно регламентированным критериям (*K*_{cr1}, *K*_{cr2}, *K*_{cr3},).

Результаты оценки

Рис. Коэффициенты усиления средней скорости ветра в пешеходной Зоне 1. Угол атаки ветра 0° (Северный)

Рис. Средневзвешанный коэффициент усиления средней скорости ветра (Зона 1) (легенда с отсечением зон «комфорта» (<1.0))

Рис. *1-й уровень* пешеходной комфортности – превышение V_{cr1} =6 м/с не чаще K_{cr1} =1000 часов в год в пешеходной зоне (*Зоны 1,2*).

5. Исследование вихревого возбуждения

В разделе представлены результаты определения собственных форм и частот колебаний двух корпусов Объекта (R1 и R2), полученные на основе модального анализа конечноэлементных моделей (ЛИРА САПР), предоставленных заказчиком. В силу отсутствия конечноэлементных моделей корпусов R3 и R4 на стадии выполнения аэродинамических исследований и существенного конструктивного сходства этих корпусов с R1 и R2 было решено:

- принять собственные частоты и формы корпусов R1 (200м) и R3 (200м) равными;
- экстраполировать собственные формы и частоты башни R2 (100м) на башню R4 (110м) с учетом увеличенной высоты последнего:

Корпуса R1 и R3 представляют из себя 60-этажные башни высотой 200м с несущим каркасом в виде железобетонных внутренних стен и размером в плане по плитам перекрытий – 49.9×23.1м. Корпуса R2 и R4 представляют из себя 30 и 32-этажные башни высотой 100м и 110м соответственно с несущим каркасом в виде железобетонных внутренних стен и размером в плане по плитам перекрытий – 42.9×23.1м

Геометрическая неизменяемость несущей системы обеспечивается жестким соединением стен и колонн с плитами перекрытий и фундамента.

В таблице приведены первые 6 собственных частот колебаний корпусов Объекта, а на рисунках показаны соответствующие собственные формы колебаний корпусов R1 и R2. В таблице приведены собственные вектора перемещений для пар этажей Корпусов Объекта в нормированном виде (максимальное перемещение (угол поворота) секции принимается равным *1.0*) для последующих расчетов на вихревое возбуждение.

i	R1 (200м)	R2 (100м)	R3 (200м)	R4 (110м)
1	0.16*	0.31	0.16	0.26
2	0.36	0.63	0.36	0.52
3	0.45	0.71	0.45	0.59
4	0.70	1.23	0.70	1.02
5	1.35	1.82	1.35	1.65
6	1.47	-	1.47	

Таблица Собственные частоты колебаний Корпусов Объекта f_i , Гц

Рис. Собственные формы колебаний Корпуса R1

		R1 и R3	1(-)1	R	2	R	4
Nº	$f_1 = 0,16\Gamma y$	$f_2 = 0,36\Gamma y$	$f_3 = 0,45\Gamma y$	$f_1 = 0,31\Gamma y$	$f_2 = 0,63\Gamma y$	$f_1 = 0,26\Gamma y$	$f_2 = 0,52\Gamma y$
этажа	$\phi_y(z)$	$\phi_x(z)$	$\phi_{rot}(z)$	φ _y (z)	$\phi_{rot}(z)$	$\phi_y(z)$	$\phi_{rot}(z)$
1-2	0.00	0.00	0.00	-0.02	0.02	-0.02	0.02
3-4	0.00	0.00	0.00	0.02	0.03	0.01	0.02
5-6	0.00	0.01	0.00	0.05	0.10	0.05	0.09
7-8	0.01	0.01	0.02	0.11	0.18	0.10	0.16
9-10	0.02	0.03	0.05	0.16	0.27	0.15	0.26
11-12	0.03	0.04	0.09	0.21	0.35	0.19	0.31
13-14	0.06	0.07	0.13	0.29	0.45	0.26	0.41
15-16	0.07	0.09	0.18	0.38	0.56	0.34	0.51
17-18	0.10	0.11	0.23	0.46	0.66	0.42	0.60
19-20	0.12	0.14	0.27	0.56	0.74	0.50	0.70
21-22	0.16	0.18	0.33	0.66	0.83	0.60	0.78
23-24	0.19	0.21	0.38	0.76	0.91	0.69	0.85
25-26	0.23	0.25	0.42	0.85	0.96	0.78	0.92
27-28	0.26	0.29	0.48	0.94	0.98	0.86	0.96
29-30	0.31	0.33	0.54	1.00	1.00	0.95	0.98
31-32	0.34	0.37	0.59			1.00	1.00
33-34	0.39	0.42	0.63				
35-36	0.43	0.46	0.68				
37-38	0.48	0.51	0.72				
39-40	0.52	0.55	0.77				
41-42	0.57	0.60	0.81				
43-44	0.62	0.65	0.84				
45-46	0.66	0.69	0.87				
47-48	0.72	0.74	0.90				
49-50	0.77	0.78	0.92				
51-52	0.82	0.84	0.95				
53-54	0.87	0.88	0.97				
55-56	0.92	0.93	0.97				
57-58	0.97	0.97	1.00				
59-60	1.00	1.00	1.00				

Числа Струхаля и амплитуды аэродинамических коэффициентов

В разделе представлены результаты квазидвумерных нестационарных аэродинамических расчетов по *Модели 3* (корпуса R1 и R3) и *Модели 4* (все корпуса).

Расчеты проводились для характерных направлений ветра, перпендикулярных фасадам:

- 19.2°, 36.9°, 109.2°, 126.9°, 199.1°, 216.9°, 289.2°, 306.8° для Модели 3 (перпендикулярно фасадам корпусов R1 и R3)
- 17.6°, 32.9°, 107.6°, 122.9°, 197.6°, 212.9°, 287.6°, 302.9° для Модели 4 (перпендикулярно фасадам корпусов R2 и R4)

Рис. Исследуемые направления ветра для Моделей 3 и 4

Примеры получаемых в результате расчетов изополей скоростей и направлений ветра показаны на рис..

Анализ амплитудных спектров позволил выявить основные энергонесущие частоты аэродинамических сил (коэффициентов) и соответствующие им амплитуды (табл. 7.4-7.6). Большинство энергонесущих чисел Струхаля (обезразмеренные частоты колебаний) слишком малы, чтобы вихревое возбуждение реализовалось для Объекта.

		-	-	•			
Корпус	V _{max}	$f_{\scriptscriptstyle 1,X}$,	$f_{\scriptscriptstyle 1,Y}$,	L_{X} ,	L_{Y} ,	$\min(St_x)$	$\min(St_{y})$
nopiije	м/с	Γц	Γц	М	М		
R1 (200м)	30.4	0.36	0.16	49.9	23.1	0.246	0.236
R2 (100м)	25.6	0.69	0.30	42.9	23.1	0.577	0.468
R3 (200м)	30.4	0.36	0.16	49.9	23.1	0.246	0.236
R4 (110м)	26.2	0.57	0.25	42.9	23.1	0.466	0.378

Таблица 5.1 Минимальные числа Струхаля, при которых возможна реализация вихревого возбуждения

В таблицах 7.4-7.6 оранжевым цветом выделены те числа Струхаля и соответствующие амплитуды, для которых возможна реализация вихревого возбуждения. При этом случаи с малыми амплитудами ($C_{X(Y)} < 0.1$) выделены голубым цветом, т.к. их учет в прочностных расчетах не имеет практического смысла.

Рис. Изополя скоростей ветра [*м*/*c*] в фиксированный момент времени (стрелками показано направление скоростей в точках)

		для <i>К</i>	сорпуса Б	RI u Kopn	yca R3.			
			Модель З	^в (рис. 4.4	б)			
		Kopn	yc R1			Корп	yc R3	
Угол атаки, °	(C_X	(C_Y		C_X		C_Y
	St	C _{X,ampl}	St	C _{Y,ampl}	St	C _{X,ampl}	St	$C_{Y,ampl}$
	0.076	1.167	0.04	0.668	0.005	0.838	0.035	0.294
19.2	0.132	0.542	0.145	0.794	0.065	1.595	0.135	0.271
17.4	0.18	0.450	-	-	-	-	0.245	0.189
	-	-	-	-	-	-	0.374	0.145
	0.032	0.508	0.055	0.696	0.069	1.998	0.010	0.345
36.0	0.072	1.492	0.170	0.403	0.088	0.916	0.150	0.325
50.7	0.120	0.557	0.344	0.263	-	-	-	-
	0.171	0.430	-	-	-	-	-	-
	0.014	0.417	0.05	0.345	0.028	0.073	0.02	0.134
I	0.044	0.415	0.125	0.389	0.09	0.048	0.075	0.163
109.2	0.065	0.451	0.18	0.308	0.141	0.039	0.3	0.087
107.2	0.083	0.394	-	-	0.270	0.032	0.389	0.083
	0.116	0.291	-	-	0.326	0.037	0.679	0.052
	-	-	-	-	-	-	0.969	0.046
	0.016	0.045	0.055	0.175	0.058	0.624	0.020	0.410
126.9	0.391	0.044	0.19	0.081	0.088	0.456	0.125	0.529
120.7	-	-	0.32	0.064	-	-	0.28	0.238
	-	-	0.794	0.052	-	-	-	-
	0.002	0.697	0.035	0.336	0.021	0.676	0.04	0.365
	0.028	0.785	0.160	0.304	0.051	0.942	0.16	0.314
199.1	0.074	1.365	0.290	0.181	0.074	1.053	0.344	0.162
	-	-	0.414	0.106	0.141	0.464	0.414	0.164
	-	-	0.559	0.099	-	-	0.664	0.102
	0.018	0.635	0.015	0.265	0.025	0.772	0.045	0.69
	0.035	0.685	0.19	0.169	0.067	1.066	0.145	0.537
216.9	0.067	2.162	0.305	0.146	0.090	0.892	-	-
210.9	-	-	0.454	0.139	0.153	0.467	-	-
	-	-	0.839	0.120	0.213	0.330	-	-
	-	-	1.093	0.082	-	-	-	-
	0.007	0.334	0.030	0.229	0.016	0.128	0.020	0.304
289.2	0.083	0.345	0.095	0.283	0.062	0.119	0.145	0.212
	-	-	0.165	0.325	0.277	0.067	0.225	0.198
	0.025	0.079	0.020	0.177	0.051	0.495	0.005	0.331
306.9	0.062	0.067	0.09	0.204	0.109	0.359	0.110	0.477
500.7	0.178	0.044	0.16	0.136	-	-	0.235	0.306
	0.317	0.056	0.339	0.109	-	-	-	-

Таблица. *Модель 3*: Значения чисел Струхаля (*St*) и соответствующая амплитуда колебаний аэродинамических коэффициентов (*C_{X,ampl}*, *C_{Y,ampl}*) лля Корпуса R1 и Корпуса R3.

Угол атаки 36.9°.

Синий – непосредственно вычисленный спектр; оранжевым – огибающая аппроксимация

		для и	Модель 4	$\frac{1}{1}$ $\frac{1}$	5)			
				(рис. т.т.)) 	Von		
VEOR OTOKU °		<u> </u>	YC KI	<u>с</u>	 	<u>Kopn</u> 7	yc kz	<u>а</u>
у гол атаки,	St		St		St		St	
	0.047	0.502	0.025	$\bigcirc 1, ampi$	0.035	0.736	0.043	0 157
	0.103	0.901	0.023	0.321	0.033	0.730	0.045	0.479
17.6	0.103	0.201	0.425	0.228	0.075	0.705	0.021	0.42
17.0	-	-	0.571	0.205	0.172	0.071	0.105	0.510
	_	_	-	-	0.297	0.329	-	-
	0 109	1.042	0.03	0.624	0.012	0.644	0.026	0 406
	0.102	0.619	0.085	0.530	0.012	0.894	0.020	0.434
	-	-	0.005	0.550	0.027	0.458	0.175	0.322
32.9	_	_	0.22	0.571	0.245	0.279	-	-
	_	_	0.315	0.357	-	-	_	_
	_	_	0.724	0.235	-	_	_	_
	0.023	0.353	0.050	0.246	0.042	0.322	0.009	0.322
	0.053	0.214	0.180	0.196	0.083	0.419	0.09	0.284
107.6	0.083	0.201	-	_	0.129	0.439	0.137	0.247
	0.153	0.143	-	_	_	-	0.197	0.245
	-	-	-	-	-	-	0.24	0.32
	0.014	0.269	0.035	0.364	0.03	0.155	0.043	0.373
122.9	0.104	0.214	0.125	0.304	0.125	0.140	0.232	0.161
	0.166	0.142	0.22	0.398	-	-	0.408	0.165
	0.018	0.859	0.01	0.263	0.01	0.828	0.047	0.342
	0.049	1.112	0.18	0.266	0.083	0.766	0.112	0.183
1076	0.083	0.792	0.374	0.212	0.104	0.674	0.163	0.208
197.0	0.173	0.376	0.624	0.112	0.146	0.535	0.485	0.174
	-	-	0.769	0.105	0.173	0.481	_	_
	-	-	0.869	0.11	-	-	-	-
	0.002	0.853	0.005	0.396	0.009	0.81	0.009	0.601
	0.023	0.856	0.07	0.311	0.032	0.631	0.056	0.345
212.9	0.051	0.976	0.14	0.235	0.132	0.691	0.236	0.37
	0.069	1.064	0.3	0.284	-	-	-	-
	0.143	0.516	0.739	0.157	-	-	_	_
	0.009	0.372	0.02	0.298	0.014	0.223	0.017	0.243
	0.062	0.408	0.135	0.279	0.046	0.195	0.094	0.249
287.6	0.086	0.391	0.265	0.256	0.072	0.180	0.193	0.3
	0.122	0.453	-	-	0.104	0.213	0.455	0.119
	0.287	0.128	-	-	0.18	0.136	-	-
	0.023	0.065	0.07	0.161	0.018	0.198	0.017	0.195
	0.113	0.057	0.499	0.074	0.294	0.101	0.09	0.190
302.9	0.146	0.043	-	-	0.446	0.070	0.197	0.174
	0.206	0.041	-	-	0.649	0.054	0.249	0.163
	0.317	0.042	-	-	-	-	0.395	0.133

Таблица. Модель 4: Значения чисел Струхаля (St) и соответствующая амплитуда колебаний аэродинамических коэффициентов (C_{X,ampl}, C_{Y,ampl}) для Kopnyca R1 и Kopnyca R2.

Нагрузки от вихревого возбуждения

	I	Kopn	yc R1		
	C_X			C_Y	
St	C _{X,ampl}	Vcr	St	C _{Y,ampl}	Vcr
0.287	0.128	26.1-31.9	0.315	0.357	22.8-27.9
-	-	-	0.425	0.228	16.9-20.7
-	-	-	0.571	0.205	12.6-15.4
-	-	-	0.724	0.235	9.9-12.1
		Kopn	yc R2		
	C_X			C_Y	
St	$C_{X,ampl}$	Vcr	St	$C_{Y,ampl}$	Vcr
-	-	-	0.485	0.174	24.7-30.2
		Kopn	yc R3		
	C_X			C_Y	
St	C _X ampl	Vcr	St	C _v ,	Var
	- n,umpt	101	Si	CY,ampl	V CI
0.28	0.514	26.7-32.7	0.29	0.388	24.8-30.3
0.28	0.514	26.7-32.7	0.29 0.454	0.388 0.412	24.8-30.3 15.8-19.3
-	0.514	26.7-32.7 - Kopr	0.29 0.454 1yc 4	0.388 0.412	24.8-30.3 15.8-19.3
-	0.514 -	26.7-32.7 - -	0.29 0.454 1yc 4	0.388 0.412 <i>C</i> _Y	24.8-30.3 15.8-19.3
0.28 	0.514 - C _X C _{X,ampl}	26.7-32.7 - Kopi	0.29 0.454 <i>iyc 4</i>	C y, ampl 0.388 0.412 Cy Cy, ampl	24.8-30.3 15.8-19.3

Таблица Характерные числа Струхаля и соответствующие амплитуды аэродинамических коэффициентов и критических сил

Выводы и рекомендации

По результатам НИР «Определение расчётных ветровых нагрузок на несущие и фасадные конструкции и параметров пешеходной комфортности многофункционального жилого комплекса» можно сформулировать следующие выводы и рекомендации:

1. На основе анализа и обобщения исходных данных разработаны и верифицированы расчетные трехмерные численные аэродинамические модели Объекта с учетом окружающем застройки и элементов инфраструктуры.

2. С использованием современных численных методов гидрогазодинамики, реализованных в программном комплексе ANSYS CFD (CFX), и разработанной методики определения пульсационной составляющей и пиковых значений давления на основе трехмерной стационарной постановки проведены многовариантные расчетные исследования ветровой аэродинамики Объекта при 40-ка направлениях ветра: 24 направления идут от 0° до 345° с шагом 15° (0° соответствует северу, 180° - югу) и 16 дополнительных направлений, соответствующих перпендикулярам к основным плоскостям фасадов корпусов комплекса.

3. По результатам расчетов ветровых нагрузок на несущие конструкции выявлены наиболее нагруженные состояния несущих конструкций Корпусов и Стилобата.

4. По результатам расчетов пиковых ветровых нагрузок на ограждающие (фасадные) конструкции выявлены максимальные положительные и отрицательные пиковые ветровые давления.

5. Согласно оценке по критериям ветровой комфортности пешеходных зон, устанавливаемых МДС 20-1.2006 для исследуемого Объекта были выявлены зоны, на которых нарушаются критерии пешеходной комфортности по критериями 1-3 и по средневзвешенному по розе ветров коэффициенту усиления ветра.

6. На основе предоставленных Заказчиками расчетных динамических моделей определены значимые низшие собственные частоты и нормированные формы колебаний корпусов объекта.

Квазидвумерными нестационарными аэродинамическими расчетами определены числа Струхаля и соответствующие аэродинамические коэффициенты резонансного вихревого возбуждения (см. п. 7.2).

Проведены оценки критических скоростей, при которых возможно возникновение вихревого возбуждения, и соответствующих поэтажных погонных сил (см. п. 7.3), которые можно использовать для расчетной оценки реакции механических моделей корпусов.